This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF BIS[3,5-DIMETHYLPYRAZOLE (1-METHOXY,3,5-DIMETHYL PYRAZOLE) COPPER(II) PERCHLORATE]

Aderemi R. Oki^a; Jesus Sanchez^a; Robert J. Morgan^a; Thomas J. Emge^b ^a Department of Chemistry, Long Island University, Brooklyn, NY, USA ^b Department of Chemistry, Rutgers University, Piscataway, NJ, USA

To cite this Article Oki, Aderemi R., Sanchez, Jesus, Morgan, Robert J. and Emge, Thomas J.(1995) 'SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF BIS[3,5-DIMETHYLPYRAZOLE (1-METHOXY,3,5-DIMETHYL PYRAZOLE) COPPER(II) PERCHLORATE]', Journal of Coordination Chemistry, 36: 3, 167 – 174 **To link to this Article: DOI:** 10.1080/00958979508022558

URL: http://dx.doi.org/10.1080/00958979508022558

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1995, Vol 36, pp. 167–174 Reprints available directly from the publisher Photocopying permitted by license only © 1995 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license by Gordon and Breach Science Publishers SA Printed in Malaysia

SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF BIS[3,5-DIMETHYLPYRAZOLE (1-METHOXY,3,5-DIMETHYL PYRAZOLE) COPPER(II) PERCHLORATE]

ADEREMI R. OKI,* JESUS SANCHEZ, ROBERT J. MORGAN

Department of Chemistry, Long Island University, Brooklyn, NY 11201, USA

and THOMAS J. EMGE

Department of Chemistry, Rutgers University, Piscataway, NJ 08855, USA

(Received April 6, 1995; in final form May 22, 1995)

The reaction of anhydrous copper nitrate with 1-hydroxy-methyl-3,5-dimethyl pyrazole in the presence of 3,5-dimethyl pyrazole in methanol gave a deep green colored solution, which upon addition of excess sodium perchlorate afforded dark green crystals of bis[3,5-dimethylpyrazole(1methoxy,3,5-dimethyl pyrazole) Cu(II) perchlorate] (1) upon slow evaporation of the solvent. The structural assignment of (1) was made in part by elemental analysis and electronic spectroscopy and was confirmed by single crystal X-ray diffraction studies. The crystal structure reveals that compound (1) crystallizes in the monoclinic space group P_{2_1}/n with four molecules in the unit cell of dimensions a = 8.927(3), b = 19.019(9), and c = 9.794(3)Å, and $\beta = 112.65(3)^\circ$. The structure has been refined to an R(F) factor of 0.029 based on 2110 observed reflections. The geometry around each Cu(II) center is best described as a square pyramid, with the basal plane occupied by two ligating nitrogen atoms with an average Cu-N distance of 1.961(3)Å and two bridging alkoxide oxygen atoms with Cu-O distances of 1.915(2) and 1.928(2)Å, respectively. The axial position is occupied by an oxygen atom from the perchlorate ion with a Cu-O distance of 2.390(2)Å. The Cu atom lies near the basal plane of a pyramid. The two Cu(II) ions are bridged by two alkoxide groups with a Cu-Cu separation of 3.022(1) Å, and a Cu-O-Cu bond angle of 103.70(1).° Ferromagnetic interaction is found to be operating in this complex, with a room temperature magnetic moment of 2.82 B.M. The electronic absorption spectrum shows a ligand field band at 695 nm ($\epsilon = 98M^{-1}cm^{-1}$) which is expected for Cu(II) with tetragonal geometry. There is also an additional peak at 350 nm ($\varepsilon = 2700 \text{ M}^{-1} \text{ cm}^{-1}$) which is associated with the charge transfer band from the bridging alkoxide oxygen to Cu(II).

KEYWORDS: dicopper(II), pyrazole, alkoxo bridge, tetragonal pyramid

INTRODUCTION

The synthesis and characterization of dinuclear Cu(II) complexes with one or more bridging ligands continues to be an area of intense research activity.¹⁻³ Most of the

[•] Author for correspondence.

studies center on the magnetic exchange interaction between coupled copper centers, and chemical modelling of the active site of hemocyanin, a binuclear Cu(II) oxygen transport protein in many species of anthropods and mollusks.² Interestingly, structural and magnetic relationships (especially involving bis (u-hydroxo), bis (μ -alkoxo) and *bis* (μ -chloro) bridged compounds) have shown strong correlations.¹ Both ferromagnetic and anti-ferromagnetic exchange interactions have been observed with the magnitude dependent on the identity of the bridging ligand, the Cu-Cu separation, the bridging angles, the metal-bridge ligand bond length and metal ion stereochemistry. The use of chelating ligands incorporating pyrazole groups has drawn strong interest.⁴⁻⁷ For example, in [CuL]₂(OH)₂ where L is the tris(pyrazolyl)borate(-1), a strong anti-ferromagnetic coupling was reported and its peroxo-bridged analogue showed a close spectroscopic match to the active sites in oxyhemocyanin.⁴⁻⁷ We are particularly interested in 1-hydroxymethyl-3,5dimethylpyrazole.⁸ This planar heteroatomic ligand should allow more control over structural factors that determine magnetic and electronic exchange properties in dinuclear complexes. We present here the synthesis, spectroscopic and structural characterization of a di-alkoxo bridged dicopper complex.

EXPERIMENTAL

1-hydroxyl methyl-3,5-dimethyl-pyrazole

This ligand was synthesized following a reported procedure.⁸

$[Cu(3,5-dimethylpyrazole)(1methoxy-3,5-dimethyl-pyrazole)(ClO_4)]_2$

To a solution of 0.25 g (2.00 mmol) of *1-hydroxylmethyl-3,5-dimethyl-pyrazole* in 30 mL of methanol was added 0.38 g (2.00 mmol) anhydrous Cu(II) nitrate, followed by addition of 0.19 g (2.0 mmol) of 3,5-dimethyl-pyrazole. The resultant solution was refluxed for 3 h, and cooled to room temperature. Sodium perchlorate (0.5 g, 4 mmol) was added, and stirring continued for an additional thirty min. The solution was filtered and the filtrate was allowed to evaporate slowly to give dark green crsytals 0.5 g (0.65 mmol) 65% yield. *Anal* Calc. for CuC₁₁H₁₇N₄ClO₅(%): C, 34.37 H, 4.42 N, 14.58 Found: C, 34.90 H, 4.63 N, 14.81. Visible spectra 350 nm ($\varepsilon = 2700 \text{ cm}^{-1} \text{ M}^{-1}$), (LMCT) and 695 nm ($\varepsilon = 98 \text{ cm}^{-1} \text{M}^{-1}$) d-d band. Physical Measurements: C, H, and N analyses were performed by Schwarzkopf Microanalytical Laboratory, NY, U.S.A. The UV/Visible spectrum was measured with a Perkin Elmer Lamda II spectrophotometer in the range of 240–800 nm. The solution paramagnetic susceptibility of 1 was measured by the shift in the proton resonance of *t*-butyl group of the *t*-butanol in methanol using a Varian EM360A NMR spectrometer.

X-ray Structure Determination

A dark green rod $(0.10 \times 0.15 \times 0.50 \text{ mm})$ of (1) was placed in oil at the end of a glass fiber and transported to a Nonius CAD-4 diffractometer with graphite-

monochromatized Mo K α (0.71073 Å) radiation. The pertinent crystallographic data are summarised in Table 1. The final unit cell parameters were obtained by least square fit of 25 accurately centered reflections measured in the ranges $17.5^{\circ} < 2\emptyset < 19.9^{\circ}$ and the intensity data were collected at 293(2) K in the range of $2^{\circ} < 20 < 25^{\circ}$. Three standard reflections monitored every 3600 s did not show any significant change in intensity during the data collection. An absorption correction (SHELX-769a) was applied with the minimum and maximum transmission factors of 0.731 and 0.852 respectively. The 4161 total reflections were merged to 2699 independent data (Rint = 0.018), and 2110 with $I>2\sigma(I)$ were used in the structure refinement. The structure solution and refinement were carried out by the direct method (SHELXS-86)^{9b} and leastsquare procedure (SHELXL-93)^{9c} [with only one restraint: the N-H bond was restrained to 0.9(1) Å]. The final cycles of refinement converged at R(F) = 0.029, $wR(F^2) = 0.061$ based on 2110 observed reflections with [I>2.0 σ (I)]. Anisotropic displacement parameters were applied for all non-hydrogen atoms. For the non-H atoms, the coordinates and equivalent isotropic displacement parameters are given in Table 2. The H atoms were refined with isotropic displacement parameters.

Formula	$C_{11}H_{17}N_4Cl O_5Cu$
FW	384.28
Density (calculated)	1.663 Mg m ⁻³
Crystal system	Monoclinic
Space group	$P2_1/n$
<i>a</i> , Å	8.927(3)
<i>b</i> , Å	19.019(9)
c, Å	9.794(3)
ß. °	112.65(3)
<i>V</i> , Å ³	1534.6(10)
Z	4
Scan type and range	ω -scan, 1.10 + 0.35*tan (θ)°
Aperture setting	$3.00 + 0.35*tan(\theta) mm$
Scan speed	2 to 8 deg min ^{-1}
Abs. coeff, mm ⁻¹	1.625
Index ranges	$-8 \le h \le 10, \ 0 \le k \le 22, \ -11 \le 1 \le 10$
θ range for data collection	2 to 25°
No. reflections	4318
Independent reflections	2699 [R(int) = 0.018]
Obsd. reflctns, $I > 2.0\sigma(I)$	2110
Data/parameters	2699/267
Refinement Method	Full-matrix least-squares on F ²
Final $R(F)^{a}$, wR $(F^{2})^{b}$ [I>2.0 σ (1)]	0.029, 0.061
Final $R(F)^{a}$, wR $(F^{2})^{b}$ [all data]	0.050, 0.065
$wR(F^2)^b$	0.061
Goodness of Fit on F^2 (all data)	1.045
Largest diff. peak and hole	0.30 and $-0.28 \text{ e.}\text{\AA}^{-3}$
Radiation (type, wavelength)	Moka 0.71073 Å
Crystal size	$0.50 \times 0.16 \times 0.10$ mm
$\mathbf{AD}(\mathbf{E}) = \mathbf{\nabla} \ \mathbf{E}\ = \mathbf{D} \ \mathbf{\nabla} \ \mathbf{E}\ = \mathbf{O} \ \mathbf{O} \mathbf{O} \mathbf{O} \ _{\mathbf{W}} = \mathbf{O} \ \mathbf{E}^2 \mathbf{E} \ \mathbf{E}^2 $	$\frac{21}{\Sigma} \frac{1}{[w(F^2)^2]} \frac{1}{2} - 0.061 w - \frac{1}{[\sigma^2(F^2)]} + \frac{1}{[\sigma^2(F^2)]} \frac{1}{2}$

Table 1 Crystallographic and data collection parameters.

 ${}^{a}R(F) = \Sigma ||F_{o}| - |F_{c}||/\Sigma ||F_{o}| = 0.029, wR(F^{2})^{b} = \{\Sigma ||w(F_{o}^{2}Fc^{2})^{2}|/\Sigma ||w(F_{o}^{2})^{2}|\}^{1/2} = 0.061 w = 1/[\sigma^{2}(F_{o}^{2}) + 0.0464*P^{2} + 6.1065*P], where P = [0.33333*MAX(0,F_{o}^{2}) + 0.66667*F_{c}^{2}]$

Atom	x	у	z	U(eq)
Cu	511(4)	4141(2)	-12977(3)	239(1)
Cl	32180(9)	- 7720(4)	- 4908(7)	286(2)
O(1)	1996(3)	-1303(1)	- 885(2)	416(6)
O(2)	4472(3)	- 973(1)	- 991(3)	433(6)
O(3)	3894(3)	- 682(1)	1082(2)	528(7)
O(4)	2519(2)	- 115(1)	-1202(2)	291(4)
O(5)	- 902(2)	- 408(1)	- 838(2)	288(4)
N(1)	-2319(3)	- 408(1)	- 3353(2)	273(5)
N(2)	- 1379(3)	160(1)	- 3328(2)	262(5)
N(3)	913(3)	1327(1)	-1561(2)	260(5)
N(4)	2474(3)	1427(1)	- 1414(3)	286(6)
C(1)	-2104(4)	- 756(2)	- 1935(3)	367(8)
C(2)	-3317(4)	- 572(2)	- 4749(3)	298(7)
C(3)	- 3002(4)	- 93(2)	- 5655(3)	309(7)
C(4)	-1785(3)	351(2)	- 4744(3)	268(6)
C(5)	-4442(5)	-1181(2)	- 5074(4)	422(8)
C(6)	- 994(4)	951(2)	- 5174(4)	333(7)
C(7)	2756(4)	2086(2)	- 1733(3)	273(6)
C(8)	1294(4)	2432(2)	-2133(3)	293(7)
C(9)	186(4)	1948(2)	- 2004(3)	276(6)
C(10)	4386(4)	2328(2)	- 1616(4)	357(8)
C(11)	-1578(4)	2037(2)	- 2294(5)	414(8)

Table 2 Atomic coordinates ($\times 10^5$ for Cu and Cl atoms, $\times 10^4$ for all other atoms) and equivalent isotropic displacement parameters ($Å^2 \times 10^4$ for all atoms) for (1). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

RESULTS AND DISCUSSION

Spectroscopy

Spectral data for this dicopper complex are consistent with a square pyramidal geometry about each of the Cu(II) centers and may be taken as evidence that no geometrical change occurs going from the solid state to solution (*vide infra*). Electronic spectra of (1) show a broad peak at $\lambda = 695$ nm ($\varepsilon = 98 \text{ M}^{-1}\text{ cm}^{-1}$) which is in agreement with a tetragonally-based coordination geometry.¹⁰ In addition, a very strong peak centered at $\lambda = 350$ nm ($\varepsilon = 2700 \text{ M}^{-1}\text{ cm}^{-1}$) is present and is assigned to the charge transfer mediated absorption from the bridging methoxide to Cu(II). Similar uv/visible peak positions have been observed in other alkoxo dicopper complexes.¹¹

Description of the Structure

The dimeric $[Cu(3-5dimethylpyrazole)(\mu_2-1-OCH_2-3,5-dimethylpyrazole)(ClO_4)]_2$ unit and atomic numbering scheme is shown in Figure 1. The structure consists of a dicopper complex with two bridging methoxide groups. The five-coordinate environment about each copper atom is best described as tetragonal pyramidal. Occupying the apex of the pyramid is one of the oxygen atoms of the perchlorate, and the four basal positions are comprised of one nitrogen atom from the 3,5-dimethyl pyrazole and a nitrogen and two bridging methoxide oxygen atoms from the 1-methoxy-3,5-dimethylpyrazole ligand. The latter yields a five-membered chelate ring, with the Cu atom. The halves of the dinuclear unit are related by

Figure 1 The molecular structure and labelling scheme of $[Cu(3,5-dimethylpyrazole) (\mu_2-1-OCH_2-3,5-dimethylpyrazole) (ClO_4)]_2$ 1, with thermal ellipsoids drawn at the 50% probability level.

crystallographic inversion symmetry, the dimeric plane composed of Cu, Cu', O(5),O(5)',N(2),N(3),N(2)' and N(3)' is also essentially planar. The geometry in this compound is not unusual as it is also observed in $[Cu(DMAEP)OH]_2[ClO_4]_2$,^{12a} where DMAEP = 2-(2-dimethylaminoethyl)pyridine $[Cu(EAEP)OH]_2[ClO_4]_2$,^{12b} where DMAEP = 2-(2-dimethylaminoethyl)pyridine, $[Cu(EAEP)OH]_2[ClO_4]_2^{12b}$ where EAEP is 2-(2-ethylaminoethyl)pyridine and both nitrate^{12c} and sulphate^{12d} salts of $[Cu(bipy)OH]_2^{2+}$. The bond distances and angles presented in Table 3 are consistent with those in similar complexes.^{12a-d} The Cu-Cu' separation being 3.022(1) Å and the Cu-O(5) and Cu-O(5)' bond lengths being 1.915(2), and 1.931(2) Å. The bond angles of Cu-O(5)-Cu' and O(5)-Cu-O(1)' of 103.6(1) and 76.43(9)°, respectively, are in range with those found in previously investigated di- μ -alkoxo copper(II) complexes.^{12a,b,c,d,13-18} The bond length between the copper center and the perchlorate oxygen atom Cu-O(4) of 2.390(2) Å is considerably shorter than at in [Cu(DMAEP)OH]₂^{12a} where Cu-O(2) is 2.721(4) Å. The geometry of the perchlorate group is essentially tetrahedral with Cl-O bond lengths ranging from 1.426(3) to 1.449(2) Å and the O-Cl-O bond angles of 108.3(1) to $109.8(2)^{\circ}$. The dihedral angle between the mean planes of the 3,5-dimethylpyrazole and the 1-methoxy-3,5 dimethylpyrazole in the coordination sphere is 70(1)°. There is extensive inter- and intra-molecular hydrogen bonding involving the pyrazole NH and the oxygen atoms of the perchlorate and the alkoxide. The shortest interatomic contact distance involves O(5) of 1-OCH2-3,5 dimethyl pyrazole and H(4)N of the adjacent pyrazole at 2.48 Å (see Figure 2). The inter- and intra-molecular distances less than or equal to the sum of the associated van der Waals radii are

<u> </u>			
Cu-O(5)	1.915(2)	Cu-O(5) ^a	1.931(2)
Cu-N(2)	1.965(2)	Cu-N(3)	1.956(2)
Cu-O(4)	2.390(2)	Cu-Cu ^a	3.022(1)
Cl-O(1)	1.426(2)	Cl-O(2)	1.436(2)
Cl-O(3)	1.432(2)	Cl-O(4)	1.449(2)
O(5)-Cu ^a	1.931(2)		
N(1)-C(1)	1.483(4)	O(5)-C(1)	1.362(4)
N(1)-N(2)	1.363(3)	N(3)-N(4)	1.358(3)
N(1)-C(2)	1.350(3)	N(3)-C(9)	1.336(4)
N(2)-C(4)	1.341(3)	N(4)-C(7)	1.338(4)
C(2)-C(3)	1.375(4)	C(7)-C(8)	1.378(4)
C(2)-C(5)	1.484(4)	C(7)-C(10)	1.1488(4)
C(3)-C(4)	1.393(4)	C(8)-C(9)	1.393(4)
C(4)-C(6)	1.486(4)	C(9)-C(11)	1.498(5)
$O(5)$ -Cu- $O(5)^{\alpha}$	76.43(9)	$O(5)^{a}$ -Cu-N(3)	97.91(9)
O(5)-Cu-N(2)	82.11(9)	N(3)-Cu-N(2)	102.72(10)
O(5)-Cu-N(3)	171.39(9)	$O(5)^{a}$ -Cu-N(2)	157.80(9)
O(5)-Cu-O(4)	97.67(8)	$O(5)^{a}$ -Cu-O(4)	88.99(8)
N(3)-Cu-O(4)	88.62(9)	N(2)-Cu-O(4)	99.55(9)
$Cu-O(5)-Cu^a$	103.6(1)		
C(1)-O(5)-Cu	119.9(2)	$C(1)-O(5)-Cu^{a}$	135.5(2)
O(1)-Cl-O(2)	109.6(1)	O(1)-Cl-O(3)	109.8(2)
O(1)-Cl-O(4)	109.7(1)	O(2)-Cl-O(3)	109.7(2)
O(2)-Cl-O-(4)	108.3(1)	O(3)-Cl-O(4)	109.8(1)
Cl-O(4)-Cu	127.0(1)		
C(2)-N(1)-C(1)	130.0(2)		
N(2)-N(1)-C(1)	118.7(2)		
C(2)-N(1)-N(2)	111.3(2)	C(7)-N(4)-N(3)	112.6(3)
C(4)-N(2)-N(1)	106	C(9)-N(3)-N(4)	105.1
C(4)-N(2)-Cu	142.3(2)	C(9)-N(3)-Cu	131.3(2)
N(1)-N(2)-Cu	111.6(2)	N(4)-N(3)-Cu	123.3(2)
O(5)-C(1)-N(1)	107.5(2)		
N(1)-C(2)-C(3)	106.3(3)		
N(4)-C(7)-C(8)	105.7(3)		
N(1)-C(2)-C(5)	121.7(3)	N(4)-C(7)-C(10)	122.6(3)
C(3)-C(2)-C(5)	132.0(3)	C(8)-C(7)-C(10)	131.7(3)
C(2)-C(3)-C(4)	107.0(3)	C(7)-C(8)-C(9)	106.6(3)
N(2)-C(4)-C(3)	109.4(2)	N(3)-C(9)-C(8)	109.9(3)
N(2)-C(4)-C(6)	122.1(3)	N(3)-C(9)-C(11)	120.3(3)
<u>C(3)-C(4)-C(6)</u>	128.5(3)	C(8)-C(9)-C(11)	129.8(3)

Table 3 Bond lengths [A] and angles [°] for (I).

Symmetry transformations used to generate equivalent atoms: a-x,-y,-z.

O(1)-O(5) = 3.11 Å, O(4)-O(5)(-x, -y, -z) = 3.05 Å, O(4)-N(3) = 3.05 Å, O(4)-N(4) = 2.94 Å, and O(2)-N(4)(1-x, -y, -z) = 2.96 Å. The extensive interand intra-molecular hydrogen bonding contributes to the overall stability of this complex in the solid state. The effective magnetic moment of 1 in solution at 295K is 2.82 μ_B .¹⁹ This observed value at 295K is comparable to the magnetic moment value of 2.64 μ_B at 200K reported for ferromagnetically coupled binuclear [Cu₂(O)(H₂O)(O₂CMe)(bpy)₂](ClO₄)₂¹⁸ in which the two Cu centers are square pyramid and the Cu-Cu bond length is 3.035(2) Å and the Cu-O-Cu angle was 103.8(2)°. Although dinuclear Cu(II) complexes usually display antiferromagnetic systems are by no means rare.¹⁴⁻¹⁸ Complex 1 is a new member of this latter group. The exchange interactions within

Figure 2 Hydrogen bonding (thin lines) in the crystal structure of $[Cu(3,5-dimethylpyrazole)(\mu_2-1-OCH_2-3,5-dimethylpyrazole)(ClO_4)]_2$ 1, which connects the dimer along the crystallographic *a*-axis ("needle" axis of the crystal).

bis(μ -hydroxo) Cu(II) systems have been well investigated,¹⁸ and the magnitude and sign of the interaction have been found to be sensitive to a number of factors including the Cu-O-Cu angle. The bridging angle of 103.6(1)°, a relatively small value may be contributing to the observed magnetism.

Supplementary material

Tables of H atom coordinates (Table S-1), anisotropic displacement parameters (Table S-II), the torsion angles (Table S-III) and observed and calculated structure factor amplitudes (Table S-IV) are available from the authors on request.

Acknowledgement

This research was supported by awards from Research Corporation (award no C3637 to ARO) and LIUFF released time committee and the Trustees of Long Island University.

References

- (a) O. Kahn, Angew. Chem. Int. Ed. Engl., 24, 834 (1985), (b) D.J. Hodgson, Prog. Inorg. Chem. 19, 173 (1975), (c) R.J. Doedens, Prog. Inorg. Chem., 21, 209 (1976), (d) M. Melnik, Coord. Chem. Rev., 42, 259 (1982), (e) M. Kato and Y. Muto, Coord. Chem. Rev., 92, 45 (1988).
- 2. K.A. Magmus, H. Ton-thal and J.E. Carpenter, *Bioinorganic Chemistry of Copper*, (K.D. Karlin and E.I. Solomon. Ed.) Chapman and Hall., New York, (1993).
- 3. E.I. Solomon, M.J. Baldin and M.D. Lowey, Chem. Rev., 92, 521 (1992).
- 4. M.K. Ehlert, S.J. Rettig, A. Storr, R.C. Thompson and J. Trotter, Can. J. Chem., 70, 2161 (1992) and ref therein.
- (a) V.P. Costes, and M.I. Fernandez-Garcia, *Inorg. Chim. Acta.*, 173, 247 (1990), (b) T.N. Donovan, D.E. Williams, J. Banks, R.M. Buchanan, H.R. Chang, R.J. Webb and D.N. Hendrikson, *Inorg. Chem.*, 29, 1058 (1990), (c) T.N. Sorrel, C.J. O'Connor and O.P. Andersen, *J. Am. Chem. Soc.* 107 4199 (1985) and ref. therein.
- (a) N. Kitajima, T. Koda, Y. Iwata and Y. Moro-Oka, Y. J. Am. Chem. Soc., 112, 8833 (1990),
 (b) N. Kitajima, K. Fujisawa, and Y. Moro-Oka, Inorg. Chem. 29, 3657 (1990),
 (c) N. Kitajima, S. Hikichi, M. Tanaka and Y. Moro-Oka, J. Am. Chem. Soc., 115, 5496 (1993).
- 7. J.C. Bayou, P. Esteban, G. Net, P.G. Rasmussen, K.N. Baker, C.W. Hahn and M.M. Gumz, *Inorg. Chem.*, 30, 2572 (1991).
- 8. l. Dvoretzky and G.H. Richter, J. Org. Chem., 15, 1285 (1950).
- 9. (a) G.M. Sheldrick, SHELX76 Structure Determination, University of Cambridge (1976), (b) G.M. Sheldrick, SHELXS86 Solution of Crystal Structures, Univ. Gottingen Ger. (1986), (c) G.M. Sheldrick, SHELXL93 Structure Refinements, Univ. Gottingen Ger. (1993).
- 10. B.J. Hathaway and D.E. Billing, Coord. Chem. Rev, 5, 143 (1970).
- 11. Y. Nishida, M. Masumoto and Y. Mori, Z. Naturforsch, 44b, 307 (1989).
- (a) D.L. Lewis, K.T. McGregor, W.E. Hatfield and D.J. Hodgson, *Inorg. Chem.*, 13 1013 (1974).
 (b) D.L. Lewis, W.E. Hatfield and D.J. Hodgson, *Inorg. Chem.*, 11, 2261 (1972), (c) R.J. Majeste and E. A. Meyers, *J. Phys. Chem.*, 74, 3497 (1970), (d) A.T. Casey, B.F. Hoskin and F.D. Whillans, *Chem. Commun.*, 104 (1970).
- T. Lindgren, R. Sillanpaar, K. Rissanen, L. Thompson, C.J. O'Connor, G. Albada and J. Reedijk, Inorg. Chim. Acta., 171, 95 (1990).
- (a) S. Brooker and V. McKee, *Inorg. Chim. Acta.*, 173, 69 (1990) and ref. therein, (b) T. Mallah, O. Kahn, J. Gouteron, S. Jeannin, Y. Jeanin and C.J. O'Connor, *Inorg. Chem.*, 26, 1375 (1987), (c) O. Khan, *Comments Inorg. Chem.*, 3, 105 (1984).
- 15. R.J. Butcher, J.W. Overman and E. Sinn, J. Am. Chem. Soc., 102, 3276 (1980).
- 16. W.B. Tolman, R.L. Rardin and S.J. Lippard, J. Am. Chem. Soc., 111, 4532 (1989).
- 17. L.K. Thompson, F.L. Lee and E.J. Gabe, Inorg. Chem., 27, 39 (1988).
- G. Christou, S.P. Perlepes, E. Libby, K. Folting, J.C. Huffman, R.J. Webb and D.N. Hendrickson, Inorg. Chem., 29, 3657 (1990) and ref. therein.
- 19. D.F. Evans, J. Chem. Soc., 2003, (1959).